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Abstract

The fractal mobile–immobile model (MIM) is intermediate between advection–
dispersion (ADE) and fractal Fokker–Planck (FFKPE) equations. It involves
two time derivatives, whose orders are 1 and γ (between 0 and 1) on the left-
hand side, whereas all mentioned equations have identical right-hand sides. The
fractal MIM model accounts for non-Fickian effects that occur when tracers
spread in media because of through-flow, and can get trapped by immobile
sites. The solid matrix of a porous material may contain such sites, so that
non-Fickian spread is actually observed. Within the context of the fractal MIM
model, we present a mapping that allows the computation of fluxes on the basis
of the density of spreading particles. The mapping behaves as Fickian flux
at early times, and tends to a fractional derivative at late times. By means of
this mapping, we recast the fractal MIM model into conservative form, which
is suitable to deal with sources and bounded domains. Mathematical proofs
are illustrated by comparing the discretized fractal p.d.e. with Monte Carlo
simulations.

PACS numbers: 05.60.−k, 46.65.+g, 05.40.Fb, 02.60.Nm

1. Introduction

A pioneering example, devoted to charge carriers in heterogeneous media [1, 2], indicated that
mass transport is not always appropriately described by Fick’s law. Indeed, in many situations,
the spread of a cloud of walkers (as different as passive contaminant particles, living organisms
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or financial values) is found to grow nonlinearly with time. Such features have been often
described in terms of partial differential equations (p.d.e) involving derivatives of non-integer
order with respect to (w.r.t) space or time [3–6], whereas nonlinear models also are currently
being investigated [7].

The successes of the classical advection–dispersion equation (ADE), which arises from
coupling Fick’s law for fluxes with the mass conservation principle, are not only supported
by the fitting of many experimental data. Indeed, the ADE also represents the hydrodynamic
limit of a class of small-scale models, where the motion of independent walkers is composed
of accumulating Gaussian jumps, and the theoretical upscaling [8] has been substantiated
by actual experiments showing walker trajectories, as recalled in [9]. Fractional p.d.e.
are more general (they can indeed be viewed as an extension of the ADE) and were also
proved to be hydrodynamic limits of stochastic models [5, 6] accounting for heavy-tailed
jumps and/or waiting times. Hence, they represent a preferential tool toward the description
of experimental data displaying non-Fickian features. Rigorous proofs directly connecting
macroscopic fractional models to small-scale scenarios for individual walkers [5, 10], lie in the
assumption that trajectories and time clocks sum up independent identically distributed random
variables, thus falling into the field of center limit theorems [11–14]. Directly checking such
hypotheses is far from trivial, nevertheless the asymptotics of the probability laws, common
to such random variables, imposes the order of the derivatives appearing in the corresponding
macroscopic models. Hence, mastering that models should help in understanding small-scale
experiments, where capturing the behavior of the distribution tails is precisely not easy at all.
Of course, there are many situations where independence of repeated events does not hold: in
this case, both ADE and fractional generalizations may be inappropriate, and other approaches
are needed [7].

Here we focus on dispersion phenomena that compare at least qualitatively with small-
scale motions where Gaussian jumps and advection are in competition with random sticking
events, temporarily shielding tracers from the influence of the mean flow stream. At the
macroscopic level, such situations are mirrored into heavy-tailed breakthrough curves (BTC)
decreasing at some power of time, negative but larger than −2. Similar behavior has been
observed, e.g. in the context of contaminant transport in specific kinds of porous media where
trapping sites and a tendency to sticking have been reported [15]. Besides the spreading of
passive tracers in unsaturated porous media [16, 17], we have in mind qualitative observations
of colloids sorbing at some sites in the solid porous matrix [18].

A class of p.d.e. called the ‘fractal Mobile–Immobile Medium’ model [19] is apparently
very promising for such situations. It is a variant of the standard MIM model [20], where
tracers are assumed to have two phases, mobile and immobile, and mass exchanges between the
two obey first-order kinetics. The ‘fractal’ version is better suited to capture BTC with heavy-
tailed trailing edges. Up to the presence of a first-order time derivative, the fractal model is
akin to the better known fractional Fokker–Planck equation (FFPE) [21, 22], whose long time
asymptotics shows similar features. All these fractional p.d.e.’s represent hydrodynamic limits
of stochastic processes, assuming that independent particles accumulate random independent
Gaussian jumps separated by time intervals. Numerical experiments by [15] show that a
combination of immobilization intervals (whose durations obey a heavy-tailed distribution)
and constant time periods devoted to advection and dispersion, corresponds to the fractal
MIM model. In order to facilitate the processing of data issued from laboratory experiments
where the most easily accessed quantity is the out coming flux, we focus on finding the
proper expression for Fick’s law to be used when the underlying model is the fractal MIM.
This effort is motivated by the prominent role of boundary conditions, often involving fluxes,
in laboratory experiments, which necessarily take place in bounded domains, such as finite
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length columns. The expression for fluxes will be shown to result in a conservative evolution
equation, better suited than the fractal MIM model itself to deal with sources of tracer [23],
hence more general. Last but not least, conservative schemes (directly connected with fluxes
in the spirit of finite volume methods) frequently allow the use of clever numerical methods.

After recalling equations used for mass transport with heavy tails, in section 2 we propose
an expression for fluxes, and recast the fractal MIM model into a conservative form. In
section 3 we show that the proposed model indeed rules the density of stochastic transport
processes involving randomly distributed immobile events intervening between mobile
periods, under specific conditions. Numerical solutions, compared with Monte Carlo
simulations, will illustrate the results of sections 2 and 3, and emphasize that the conservative
form is indeed appropriate for problems involving a forcing term.

2. Fick’s law with long-term memory

Many experimental data involving transport in the environment, or in laboratory columns
filled with porous material, show rapidly increasing BTC, followed by a trailing edge whose
prominence and duration vary, depending on the material and on the flow conditions [15–17,
24, 25]. A huge collection of field- as well as laboratory-scale experiments supports such
non-Fickian effects. They are not compatible with the ADE (where fluxes obey Fick’s law),
and the original MIM model represents an important progress in view of such situations
[20]. Nevertheless, very marked heavy-tailed trailing edges, observed especially in the case
of passive tracers in unsaturated conditions [16, 17], and also of certain bacteria in saturated
sand [18], remain out of reach. The fractal variant is more appropriate to describe such data,
and we will see that it can be put into a conservative form.

2.1. Fractal MIM model

The original MIM model builds upon the fact that, in many natural porous media, tracers may
temporarily be stopped at immobile sites, which may be disseminated in the solid matrix. The
model was indeed developed by hydrologists, often facing situations where only the ‘mobile’
phase is accessible to field measurements. The simplest form of the model assumes first-order
kinetics for exchanges between mobile and immobile phases. Solving the kinetic equation
ruling the immobile concentration, allows the determination of the total density of tracer, in the
form of a single equation. The equation appears as a modified ADE, involving a convolution
with an exponential kernel, besides the regular time derivative on the left-hand side. In the
limit of small relaxation times, we thus obtain a constant factor larger than 1, in front of that
derivative (the well-known retardation factor). Processing along the same lines, it can be
shown that power-like kernels yield the fractal version [15, 19, 26]

∂tC(x, t) + λ∂
γ
t C(x, t) = LC(x, t), (1)

for the total density of tracer (accounting for mobile and immobile phase together). With
λ �= 0, equation (1) captures the above-mentioned non-Fickian effects with heavy tails. Often,
these features are referred to as ‘memory effects’; indeed, the presence of power laws implies
that the past history of each particle is forgotten very slowly in time. The model reduces to
the classical ADE when λ = 0, and the original MIM model corresponds to (1) with γ = 1.
In the linear mapping L = K�− v · ∇, we have the Laplacian operator � and the gradient ∇,
whereas K and v represent diffusivity and mean flow velocity. On the left-hand side of (1), we
have the Caputo fractional derivative ∂

γ
t , whose definition and basic properties are recalled in

appendix A. Equation (1) was introduced by [19], then used by [15] in order to represent field
data for the evolution of a dissolved tracer in heterogeneous aquifers.
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Equation (1), and also

∂
γ
t C(x, t) = LC(x, t), (2)

more widely used (with γ in ]0, 1]) are particular cases of the more general time-fractional
diffusion equation of distributed order [32, 33]

(∫ 1

0
w(dβ)∂

β
t

)
C(x, t) =

(∫ 1

0
w(dβ)I

1−β

0,+

)
∂tC(x, t) = LC(x, t),

with w = δ0 + λδγ for (1) and w = δγ for (2). Here δa represents the Dirac measure
concentrated on point a. Equation (2) [9, 22] is equivalent to ∂tC(x, t) = D

1−γ

0,+ LC(x, t),
which may also be written as [34]

∂tC(x, t) = LD
1−γ

0,+ C(x, t), (3)

where we have the Riemann–Liouville derivative D
1−γ

0,+ , whose definition is recalled in
appendix A. Equations (2) and (3) are equivalent when K and v are time independent.
Nevertheless, inhomogeneous problems issued from (2) and (3) by adding some forcing
r(x, t) on the right-hand side are not equivalent [23]. Equation (2) has been applied to the
fitting of many BTC, obtained at the exit of porous columns (with constant flow), though it
hardly captures both early and late time behavior [16, 17]. Addressing fluxes of particles
spreading according to equation (1) will help us seeing that the fractal MIM model describes
heavy-tailed BTC as well as FFPE, without missing Fickian early behavior.

2.2. Conservative form for (1)

The ADE corresponds to mass conservation principle, combined with classical Fick’s law.
This latter states that the flux F(x, t) of spreading matter through x at instant t is [35, 36]

F(x, t) = −K∇C(x, t) + C(x, t)v.

If (2) holds, instead we have

F(x, t) = −K∇D
1−γ

0,+ C(x, t) + D
1−γ

0,+ C(x, t)v.

According to the definitions of fractional integrals and derivatives, recalled in appendix A,
equation (1) corresponds exactly to

(
Id + λI

1−γ

0,+

)
∂tC(x, t) = LC(x, t), where Id denotes

identity. Moreover, the mapping Id + λI
1−γ

0,+ , equivalent to multiplication by 1 + λsγ−1

in Laplace variables (see the remark of appendix A), is proved in appendix B to have an
inverse operator which we call

(
Id + λI

1−γ

0,+

)−1
. Therefore, equation (1) is equivalent to mass

conservation law

∂tC(x, t) = −∇ · F(x, t) (4)

combined with a flux

F(x, t) = −K∇(
Id + λI

1−γ

0,+

)−1
C(x, t) +

(
Id + λI

1−γ

0,+

)−1
C(x, t)v. (5)

Appendix B also shows that similar expressions for fluxes correspond to more general fractional
equations of distributed order. In section 5, we will see that inserting a source delivering
particles according to rate r(x, t) results in adding the forcing term r(x, t) on the right-hand
side of (4).
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Figure 1. Variations of (Id + λI
1−γ

0,+ )−1f (t), compared with f (t) itself and λ−1D
1−γ

0,+ f (t) for
small, respectively large, values of t. We took f (t) = −t, λ = 1 and γ = 0.75. The dashed
curve stands for (Id + λI

1−γ

0,+ )−1f (t), thick lines at the left and at the right correspond to f (t) and

λ−1D
1−γ

0,+ f (t), respectively.

2.3. Early and late time behavior for fluxes

When t is small,
(
Id + λI

1−γ

0,+

)−1
f (t) is very close to f (t), since I

1−γ

0,+ is a small mapping of

Lp[0, T ] (cf appendix B). When t is large, in contrast
(
Id + λI

1−γ

0,+

)−1
f (t) is approximately

1
λ
D

1−γ

0,+ f (t), as we can see from appendix C: we recover the flux corresponding to (2) or (3).
Hence (1) and (5) bridge between Fickian fluxes at early times and non-Gaussian behavior at
late times, due to the release of previously trapped particles. In section 4, we present specific
methods allowing us to compute the mapping

(
Id + λI

1−γ

0,+

)−1
. An example showing early,

intermediate and late time behavior, is represented in figure 1.
Equation (3) is the hydrodynamic limit of a stochastic scenario, involving Gaussian

random jumps performed during power-law distributed time series [22]. We will see that
equation (1) and equivalent form (4) also represent the macroscopic version of a small-scale
model for dispersion, involving immobile time periods for the walkers.

3. Small-scale model for (1)

The idea that particles of tracer may undergo periods of immobilization corresponds to the letter
I in the ‘MIM’ acronym. Equations such as (3) were shown to rule the density of some process
X(t) subordinated to the hitting time process of a stable subordinator, provided the density
of X(t) satisfies the Fokker–Planck equation with force field v [22]. Following indications
of [15], we will see that equation (1) also describes Brownian motion with drift (possibly
modified in view of boundary conditions), intermixed with immobile random periods.

3.1. Fickian advection–dispersion

With λ = 0, (1) is the standard ADE, which rules the evolution of the propagator q(x, t) of a
Brownian motion, with a drift representing advection speed v. We restrict our attention to the
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one-dimensional case, and consider space domains which may be either infinite, or limited by
‘natural’ boundary conditions as follows. Inserting an absorbing limit

q(x1, t) = 0 (6)

at abscissa x1 means that particles arriving there are killed. On the other hand, inserting a
zero-flux condition

−K∂xq(x0, t) + vq(x0, t) = 0 (7)

means that particles bounce back when hitting an elastic wall, located at x0.
In order to see later that the fractional derivative ∂

γ
t appears in (1) when we impose

random sticking times, as in [15], we will consider a random process X(t) whose probability
density function (p.d.f.) q(x, t) satisfies

∂tq(x, t) = (
K∂2

x2 − v∂x

)
q(x, t) (8)

in the domain ]x0, x1[, which may be infinite or bounded, and associated with boundary
conditions such as (6)–(7). Moreover, X(t) is assumed start from the initial condition

q(x, 0) = ϕ(x). (9)

x1, which may represent the inlet and the outlet of a device subjected to constant through flow
of speed v. Process X(t) can be thought of as being the limit, when dt tends to zero, of a
random walk performed by independent particles accumulating independent jumps, distributed
as

√
2K dtN , with N a Gaussian normalized and centered random variable. Moreover, during

time intervals of duration dt separating the jumps, particles move at velocity v. In an infinite
domain, the location of a tagged particle at time τ = n dt is distributed as

Xdt (τ ) = n1/2
√

2K dtN + vτ =
√

2KτN + vτ,

which only depends on τ . The p.d.f. of process Xdt (τ ) tends to that of X(τ) when dt tends
to zero. In a bounded domain, limited by the zero-flux boundary condition (7), Xdt (τ ) does
not describe the location of a tagged walker, but gives the distance, covered along trajectories.
Nevertheless, the particle density tends to the solution q of (6)–(9), when dt tends to zero [36].

3.2. Advection–dispersion with sticking

We now modify the random walk: just after each period of duration dt , we insert independent
random sticking times, distributed as dt1/γ W , the random variable W following a stable Lévy
law of exponent 0 < γ < 1, concentrated on R+. The p.d.f. uγ,λ of W has Laplace transform
e−λsγ

[15].
Trajectories are not modified, but time schedules are different. Mobile and immobile

periods have different time scales, with very different long-time behavior due to the infinite
mean of W . Because it is a sum of independent identically distributed stable random variables,
the total sticking time corresponding to n mobile events of overall duration ndt is, in turn, a
stable random variable [11], of density 1

n1/γ × 1
dt1/γ uγ,λ

( ·
n1/γ dt1/γ

)
. Hence, when the mobile (or

operational) time is τ , the total sticking time a tagged particle spent in traps, is given by the
γ -stable strictly increasing Lévy motion U(τ) whose p.d.f. is 1

τ 1/γ uγ,λ

(
y

τ 1/γ

)
. The clock time

is U(τ) + τ instead of τ , and the delay U(τ) may be significant, since W has infinite mean.
The inverse process

Zt = inf{τ/U(τ) + τ > t}
represents the operational time at clock time t (the real physical time).

Hence, following the lines of [22] (where time intervals between jumps correspond to
U(τ) instead of U(τ) + τ ), we address the p.d.f. p(x, t) of process Y (t) = X(Zt), computing

6
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the location at instant t of a particle performing the above Brownian motion X(t), subordinated
to Zt . We will prove the following theorem.

Theorem 1. Let X(t) be a stochastic process whose p.d.f. q(x, t) solves (8) in ]x0, x1[,
and satisfies initial and boundary conditions (9) and (6)–(7). Then, if U is a γ -stable strictly
increasing Lévy motion whose p.d.f. has Laplace transform e−λτsγ

while Zt denotes the inverse
process of U(τ) + τ , the p.d.f. p(x, t) of the subordinated process Y (t) = X(Zt) solves (1)
and satisfies (9) and (6)–(7).

3.3. Proof of the theorem

Since X(t ′) and Zt are independent processes, with parameters t ′ and t, the p.d.f. p(x, t) of
the subordinated process Y (t) is given by [22, 37, 38]

p(x, t) =
∫ ∞

0
q(x, τ )g(τ, t) dτ,

where g(τ, t) is the p.d.f of Zt . Hence, the Laplace transform p̃(x, s) of p(x, t) is equal to

p̃(x, s) =
∫ +∞

0
q(x, t ′)g̃(t ′, s) dt ′. (10)

Now, let us compute g and g̃. Since process U(τ)+τ is strictly increasing and right continuous
[10], we have P {U(τ) + τ > t} = P {Zt < τ }, from which we deduce

P {U(τ) + τ > t} = 1 −
∫ t−τ

τ1/γ

0
uγ,λ(z) dz,

hence

g(τ, t) = ∂τP {U(τ) + τ > t} =
[

t

γ τ 1+1/γ
+ (1 − 1/γ )

1

τ 1/γ

]
uγ,λ

(
t − τ

τ 1/γ

)
.

Noting that the Laplace transform of t
γ τ 1+1/γ uγ,λ

(
t−τ
τ 1/γ

)
is∫ +∞

0
e−st t

γ τ 1+1/γ
uγ,λ

(
t − τ

τ 1/γ

)
dt = − 1

γ τ
∂s

∫ +∞

0
e−st 1

τ 1/γ
uγ,λ

(
t − τ

τ 1/γ

)
dt,

since also the Laplace transform of uγ,λ is e−λsγ

, for g(τ, t) we have

g̃(τ, s) = − 1

γ τ
∂s e−λτsγ −sτ +

(
1 − 1

γ

)
e−λτsγ −sτ = (λsγ−1 + 1) e−λτsγ −sτ .

This implies p̃(x,s)

λsγ−1+1 = q̃(x, s + λsγ ), due to (10). Recalling that q̃(x, s) satisfies sq̃(x, s) −
ϕ(x) = Lq̃(x, s) for any positive valued s, and noting that the mapping s �→ s + λsγ in one
to one in ]0, +∞[, we also have

(s + λsγ )q̃(x, s + λsγ ) − ϕ(x) = Lq̃(x, s + λsγ )

in ]x0, x1[, hence

(s + λsγ )
p̃(x, s)

1 + λsγ−1
− ϕ(x) = L

p̃(x, s)

1 + λsγ−1
. (11)

Now, let C(x, t) solve (1) in ]x0, x1[, and satisfy the boundary conditions (6), (7) and the
initial data (9) we have

(s + λsγ )C̃(x, s) − (1 + λsγ−1)ϕ(x) = LC̃(x, s).

Hence, F(x, s) = p̃(x, s) − C̃(x, s) solves (s + λsγ )F (x, s) = LF(x, s) in ]x0, x1[ with (6),
(7), and is therefore equal to zero in ]x0, x1[, which proves the claim.

Random walks provide discrete approximations to process Y (t), hence to solutions to (1).
Comparing histograms against numerical simulations of (1) or (4) will yield an alternative
proof of the relationship between (1) or (4) and process Y (t), and of the relevance of (5) for
fluxes.

7
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4. Numerical illustration

Accurate numerical schemes, based upon discrete approximations to Caputo and Riemann–
Liouville derivatives, are available for equations (2), (3) [40, 41]. They adapt to equations (1)
and (4), whereas computing fluxes need a discrete approximation to the inverse of

(
Id+λI

1−γ

0,+

)
.

Inverting this mapping yields an alternative method discretizing those equations, which
compares satisfactorily with the above mentioned more classical schemes, and will allow
us to prove numerically that equations (1)–(4) and (5) describe advection–dispersion with
sticking.

4.1. Computing the inverse of
(
Id + λI

1−γ

0,+

)

We will see that discretizing
(
Id + λI

1−γ

0,+

)
yields an algebraic system, whose inverse

approximates
(
Id + λI

1−γ

0,+

)−1
.

For g a given function, defined on R+,
(
Id + λI

1−γ

0,+

)−1
g is f , such that g(t ′) =(

Id + λI
1−γ

0,+

)
f (t ′) in [0, t], which we discretize according to t = n�t . Functions g and

f are represented by the vectors G(n) and F(n), whose coordinates are the g(j�t) and f (j�t),
denoted by g(j) and f (j), with 0 � j � n. Approximating I

1−γ

0,+ f (t ′) (for 0 � t ′ � t) by


n′
i=0wif

(n′−i) with 0 � n′ � n, yields W(n)F(n) = G(n), where W(n) = (
W

(n)
i,j

)
is the lower

triangular array of dimension (n+ 1)× (n+ 1), of elements W
(n)
i,i = 1 +λw0,W

(n)
i,i−j = λwj for

0 < j and W
(n)
i,i+j = 0, which we have to invert. Because of the structure of W(n), the inverse

is another lower triangular array B(n) = (B
(n)
i,j ), of the form of B

(n)
i,i = b

(n)
0 , B

(n)
i,i−j = b

(n)
j for

0 � j � i � n and B
(n)
i,i+j = 0 for 0 < j , with b

(n)
i filling the diagonal of rank i. And arrays

B(n) can be stored in a vector form, which is very convenient to save computer’s memory.
Hence the inverse

(
Id + λI

1−γ

0,+

)−1
is of the form 
n

i=0b
(n)
i f (n−i).

Not surprisingly, the quality of the resulting scheme for
(
Id + λI

1−γ

0,+

)−1
depends on the

accuracy of the approximation 
n
i=0wif

(n−i) to the integral I
1−γ

0,+ f (n�t). We approximated∫ (j+1)j�t

j�t
f (t − t ′) t ′ −γ

�(1−γ )
dt ′ by using f n−j +f n−j−1

2

∫ (j+1)j�t

j�t
t ′ −γ

�(1−γ )
dt ′, which yields

�t1−γ

2�(2 − γ )

[
f (n) + 
n−1

j=1f
(n−j)((j + 1)1−γ − (j − 1)1−γ ) + f (0)(n1−γ − (n − 1)1−γ )

]

for I
1−γ

0,+ f . Checking the above discretization of
(
Id+λI

1−γ

0,+

)−1
against the Laplace convolution

of kernel Hλ,γ (see appendix C), we found an overall relative error of less than 10−2 per cent,
with time step �t = 10−3. Figure 1 was obtained this way.

4.2. Discretizing (1) and (4)

In order to avoid a strongly restrictive stability condition imposing very small time steps, an
implicit scheme for (1) [39] is recommended, with second-order accurate expressions for space
derivatives, as in appendix D. Discretizing

(
Id + λI

1−γ

0,+

)−1
as above allowed us to solve (4)

according to method 1 of appendix D. An alternative way (method 2 of appendix D) consists
in discretizing the Caputo derivative in (1). To do this, we used a scheme of the order of 2 − γ

[40] instead of an expression of the order of 1, based upon Grünwald–Letnikov’s formula [41]
which is known to yield a converging solution to (2).

8
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1 2 3 4

t
0

0.005

0.01

0.015

ε

Figure 2. Relative error ε for the numerical solution of (1), with methods 1 and 2, in a particular
case where an exact solution is available. Method 1 corresponds to dashed lines, full line stands
for method 2, and we have set γ = 3/4, λ = 1 and v = 10. Space and time steps are �x = 10−2

and �t = 10−3.

We checked both methods against

C(x, t) = A(t) evx/(2K) sin πx

which exactly solves (1) or (4) in ]0, 1[, and satisfies C(0, t) = C(1, t) = 0, provided A(t)

satisfies the ordinary differential equation(
∂t + λ∂

γ
t

)
A(t) = −�A(t)

with A(0) = 1 and � = π2K + v2/(4K). Following [28], A(t) is the inverse Laplace
transform of 1+λsγ−1

s+λsγ +�
, equal to

A(t) = �λ sin πγ

π

∫ ∞

0

e−ρtργ−1

(� − ρ)2 + λ2ρ2γ + 2λ(� − ρ)ργ cos(γ π)
dρ. (12)

Comparisons displayed on figure 2, show that method 1 is slightly more accurate at early times
while method 2 is better at late times. For simulations presented in the next subsection we
used both, and discrepancies were not visible. Grünwald–Letnikov’s scheme yields relative
errors of about four times that of methods 1 and 2. Similar checks were performed for fluxes.
From the discretized density C(x, t), we derived the flux according to (5) and subsection 4.1.
An exact expression for the flux corresponding to the example, used for the above checks is

F(x, t) = (
Id + λI

1−γ

0,+

)−1A(t) evx/(2K)(v sin(πx)/2 − Kπ cos(πx)), (13)

where A satisfies (12), so that (Id + λI
1−γ

0,+ )−1A(t) has Laplace transform 1
s+λsγ +�

. Comparing
fluxes, numerically computed or given by the exact solution (13) yields issues, very similar to
figure 2, with an overall relative error of less than 2%.

4.3. Monte Carlo simulations of density and fluxes for Y (t)

In order to represent the density of Y (t), let us consider, as in [15], a discrete time random
walk with independent jumps, separated by waiting times of identical duration dt . Jumps
(w.r.t. a frame, moving at speed v) distributed as lN , with N a Gaussian random variable
as in subsection 3.1, yield a process whose limit is X(t) when time- and length-scales dt

9
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0 0.2 0.4 0.6 0.8 1
x

0

0.0002

0.0004

0.0006

C
(x

,t)

Figure 3. The density of Y (t) according to Monte Carlo simulation and discretization of (1).
Circles and squares represent normalized histograms of a random walk as in subsection 3.3, with
Q = 104 walkers, at times t = 1 and t = 2, respectively. Full line stands for the discretized
equation (1). Parameters are K = 1, γ = 1/2, λ = 1 and v = 1. Simulations were started (at
instant 0) from a uniform distribution, concentrated on a very small interval near x = 0.5.

and l tend to zero. If we impose K = l2/(2dt), the density of particles tends to q(x, t),
which satisfies (8). To approximate p and Y (t), we impose that the jump of rank n takes
place at instant ndt + W1 + · · · + Wn (instead of ndt), the Wi being independent random
variables distributed as �Sγ (1, 1, 0). According to the notations of [14], Sγ (β = 1, σ = 1, 0)

denotes a totally skewed, normalized, stable random variable of exponent γ without bias,
whose p.d.f. has Laplace transform e−sγ / cos(πγ /2). The random variable W1 + · · · + Wn has
p.d.f. n1/γ �Sγ (1, 1, 0) whose Laplace transform is e−(�s)γ n/ cos(πγ /2), itself equal to e−λτsγ

for n dt = τ , provided we set �γ = λ dt cos(πγ /2). Histograms represent the density of
walkers.

Figure 3 compares histograms against numerical solutions to (1) or (4), starting from a
uniform density concentrated on a small sub-interval. The agreement provides a visual proof
of the theorem, which states that equations (1)–(4) indeed rule the density of Y (t). Figure 4
shows outlet fluxes issued from both methods, and illustrates (5), which extends Fick’s law to
heavy-tailed sticking times.

Similar comparisons will help in understanding that (4) is suitable to situations where,
instead of being launched together at time t = 0, walkers are delivered progressively.

5. A model for advection–dispersion with immobile periods, accounting for sources

In general, at the laboratory or at the field scale, tracer injection may not be instantaneous, and
generic source rate r(x, t) must be taken into account.

Of course, simply adding r(x, t) on the right-hand side of (1) or (4) does not yield
equivalent problems; this also holds for (2) and (3) [23]. The appropriate equation for
advection–dispersion with immobile periods involving sources is

∂tC(x, t) = L
(
Id + λI

1−γ

0,+

)−1
C(x, t) + r(x, t), (14)

equivalent to

∂tC(x, t) + λ∂
γ
t C(x, t) = LC(x, t) +

(
Id + λI

1−γ

0,+

)
r(x, t).

10
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0 0.5 1 1.5

t

0

0.005

0.01

0.015

0.02

0.025

F
(x

1,
t)

Figure 4. The flux of particles at the absorbing outlet x1 of domain ]x0, x1[, across time. Circles
represent number of walkers crossing the outlet during small time intervals, the flux computed
from (1) and (4) corresponds to the full line. Parameters and initial data are as for figure 3.

0 0.2 0.4 0.6 0.8 1

x
0

0.0004

0.0008

C
(x

,t)

Figure 5. The density of Y (t) according to Monte Carlo simulation and discretization of (14),
with r(x, t) constant for 0 � t � t0 = 0.5. Snapshots, represented at the left, correspond to an
active source: upright large and small triangles represent times t = 0.1 and t = 0.3, respectively.
Circles denote time t = t0 = 0.5 when the source was switched off. Snapshots obtained after
t0 are displayed on the right: downward small and large triangles denote t = 0.7 and t = 0.9,
respectively. Time t0 (circles) has been represented also. Parameters are the same as used for
figure 3.

To see this, recall that, according to subsection 3.2, (1) and (4) rule the evolution of
the density C(x, t) of a cloud of walkers started from initial density C(x, 0) = ϕ(x), and
note that starting the process at time τ (instead of 0) would yield density C(x, t − τ). In
Laplace variables, we easily see that this is equivalent to taking initial data equal to zero,
while adding source rate r(x, t) = ϕ(x)δ(t − τ) on the right-hand side of (4), which yields
a particular case of (14). Hence, with this expression for r, (14) represents the density of a
cloud of walkers started from an instantaneous source. We pass to the general case on the
basis of the linear character of the problem, since walkers were assumed to be independent.
Then, for a source, active for 0 � t < t0 (where t0 may be finite or not), we just have to add

11
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0 0.5 1 1.5 2 2.5 3

t
0

0.002

F
(x

1 ,t
)

Figure 6. The flux of particles at x1, across time, when particles are delivered according to rate
r(x, t), as for figure 5. Circles represent Monte Carlo simulations, and full line stands for fluxes
computed according to (5) after concentration was obtained from (14). Parameters are as for
figure 3.

up densities, or equivalently instantaneous sources of the above particular case, according to
r(x, t) = ∫ t0

0 r(x, τ )δ(t − τ) dτ .
Figures 5 and 6 represent a visual proof of this point, with r(x, t) constant in a small

interval concentrated near x = 0.5, during time interval [0, 0.5]. After that the source was
switched off.

6. Conclusion

The fractal MIM model was proposed by Zang et al [19] and Schumer et al [15]. It represents
advection–dispersion of particles which can get stuck in immobile traps, and then be released.
The trapping times have a random duration, distributed according to a stable Lévy law. This
point was proved within the framework of small-scale motions, accumulating independent
displacements, normally distributed as for classical diffusion. Here, for each time τ globally
spent in motion, the total immobile period is given by a Lévy process U(τ), stable and taking
only positive values, which implies a stability exponent γ between 0 and 1. We proved that
the density of particles performing such a random walk, started from initial data at instant
t = 0, satisfies (1).

Then, the flux of particles is given by Fick’s law provided that we apply it to a definite
functional of the concentration, which is a non-local-in-time mapping accounting for the
memory of the past, and for the release of previously trapped particles. In fact, this functional
computes the density of mobile walkers, available for transport (not trapped), and can be
defined as the inverse of another (non-local) mapping. It is also equal to a convolution whose
kernel involves a function of the Mittag–Leffler type. The time mapping is easily discretized.
For computations, we found that inverting the non-local mapping is more viable and rapid than
addressing the convolution. Nevertheless, results of [45] may help us using the convolution. At
early times, the mapping giving the density of mobile walkers almost coincides with identity,
and fluxes accounting for immobilizations are almost Fickian, since few particles are trapped.
At late times, instead, the mapping is approximately proportional to the Riemann–Liouville
derivative of the order of 1 − γ , as when the fractional Fokker–Planck equation holds.

12
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The obtained expression for fluxes allowed us to identify in the fractal MIM model a
conservation law (4), which appears to be more suitable than (1) to account for particles that
are injected progressively, as frequently happens in transport experiments. Sources can easily
be incorporated on the right-hand side of (4), which yields the inhomogeneous form of the
fractal MIM model (14); the forcing r represents a source rate, possibly distributed in time
and space. It now remains to prove that (4) and (14) still represent advection–dispersion with
heavy-tailed immobile periods when parameters such as K and v depend on time.

The reasoning would adapt to slightly more general macroscopic models with a fractional
Riesz–Feller derivative of order α between 1 and 2 instead of the usual second-order derivative
which we considered in (1) and (4) [46, 47]. We then would have a space derivative of the
order of α − 1 in place of Fickian diffusive flux in (5), and some care would be necessary
to handle boundary conditions [36]. But the time mapping computing the concentration of
mobile particles would be exactly the same. Passing to ‘shorter’ sticking times, oppositely
[24, 42], with larger values of γ , would not consist in a straightforward generalization of the
reasoning, presented here, and many important steps would need being deeply revisited.
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Appendix A. Definition of fractional integrals and derivatives

Fractional integral and derivatives generalize to non-integer orders the repeated integrals and
derivatives [27–31] according to the following definitions.

Definition 1. When α is positive, the fractional integral of the order of α is

Iα
0,+f (t) = 1

�(α)

∫ t

0
(t − t ′)α−1f (t ′) dt ′.

In equations (1) and (2), we use the Caputo derivative, and an other mapping, called Riemann–
Liouville derivative, appears in (3).

Definition 2. The Caputo fractional derivative ∂α
t f of function f , of the order of α strictly

between integers n and n + 1, is ∂α
t f (t) = I n+1−α

0,+ ∂n+1
t f (t).

Definition 3. The Riemann–Liouville fractional derivative Dα
0,+f of the order of α, on [0, t]

is Dα
0,+f (t) = ∂n+1

t I n+1−α
0,+ f (t).

The difference between both derivatives is [28]

Dα
0,+f (t) − ∂α

t f (t) = 
n
k=0

t k−α

�(k + 1 − α)
∂k
t f (0+).

Using Laplace variables, and setting L(f )(s) = f̃ (s) = ∫ +∞
0 e−stf (t) dt for the Laplace

transform of function f , yields useful formulae for fractional calculus, according to the
following remark.

Remark 1. In Laplace variables we have

L
(
Iα

0,+f
)
(s) = s−αf̃ (s),

L
(
∂α
t f

)
(s) = sαf̃ (s) − 
n

k=0∂
k
t f (0+)sα−1−k,

13
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and

L
(
Dα

0,+f
)
(s) = sαf̃ (s) − 
n

k=0∂
k
t I n+1−α

0,+ f (0+)sn−k,

for α between integers n and n + 1.

Appendix B. Inverting
(
Id + λI1−γ

0↪+

)
and more general similar mappings

The inverse makes sense in Lp[0, T ] due to Neumann series when T is small. Indeed,
when functions g and h belong to Lp[0, T ] and L1[0, T ], the convolution g ∗ h(t) =∫ t

0 g(t − t ′)h(t ′) dt ′ satisfies Young’s inequality [30]

‖g ∗ h‖Lp[0,T ] � ‖g‖Lp[0,T ]‖h‖L1[0,T ].

Taking h(t) = tα−1/�(α) we obtain ‖Iα
0,+f ‖Lp[0,T ] � ‖f ‖Lp[0,T ]

T α

�(α+1)
, so that the mapping

Iα
0,+ is bounded in the Banach space Lp[0, T ]. Hence, the series 
n�0

(−λI
1−γ

0,+

)n
inverts

Id + λI
1−γ

0,+ in Lp[0, T ], provided T satisfies λT α < �(α + 1).

We will see that
(
Id + λI

1−γ

0,+

)−1
exists at all times. In fact,

(
Id + λI

1−γ

0,+

)
is a particular

case of Id +
∫ 1

0 w̄(dβ)I
βmax−β

0,+ , and we will prove the following proposition.

Proposition 1. Let w̄ be a finite measure, concentrated on [0, βmax] ⊂ [0, 1], and satisfying∫ βmax

0
χβ−βmax |w̄(dβ)| < 1 (B.1)

with χ in R+. Then, Id+
∫ 1

0 w̄(dβ)I
βmax−β

0,+ is invertible, with inverse 
n�0
(− ∫ 1

0 w̄(dβ
)
I

βmax−β

0,+ )n

in the Banach space Xχ = {f/‖e−χf ‖Lp[0,T ] < ∞}, with weight e−χ (t) = e−χt .

Proof. The lemma 3 of [43] states that
∥∥e−χIα

0,+f
∥∥

Lp[0,T ] � χ−α‖e−χf ‖Lp[0,T ] for every f in
Xχ . This implies∥∥∥∥e−χ

∫ βmax

0
w̄(dβ)I

βmax−β

0,+ f

∥∥∥∥
Lp[0,T ]

�
∫ βmax

0
χβ−βmax |w̄(dβ)|‖e−χf ‖Lp[0,T ],

hence the mapping
∫ βmax

0 w̄(dβ)I
βmax−β

0,+ is bounded by
∫ βmax

0 χβ−βmax |w̄(dβ)| in Xχ , so that

the Neumann series 
n�0
(− ∫ 1

0 w̄(dβ)I
βmax−β

0,+

)n
converges in this space, with sum

(
Id +∫ 1

0 w̄(dβ)I
βmax−β

0,+

)−1
, due to (B.1). �

Remark 2. With βmax = 1 and w̄ = λδγ , we have
∫ 1

0 w̄(dβ)I
βmax−β

0,+ = λI
1−γ

0,+ , and

the Proposition 1 states that
(
Id + λI

1−γ

0,+

)−1
exists in Xχ provided we take χ such that

0 < λχγ−1 < 1.

More generally, the above proposition implies that wit w = w̄ + δβmax , the mapping
∫ 1

0
w(dβ)I

1−β

0,+ = I
1−βmax
0,+

(
Id +

∫ βmax

0
w̄(dβ)I

βmax−β

0,+

)

has a left inverse, which is
(
Id +

∫ βmax

0 w̄(dβ)I
βmax−β

0,+

)−1
D

1−βmax
0,+ . For βmax = 1, it even is a

true inverse. Hence, for particles spreading according to
∫ 1

0 w(dβ)∂
β
t C = LC, the flux is

(−K∇ + v)
(
Id +

∫ βmax

0 w̄(dβ)I
βmax−β

0,+

)−1
D

1−βmax
0,+ .
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Appendix C. The mapping
(
Id + λI1−γ

0↪+

)−1
when t is large

In Laplace variables, the mapping
(
Id + λI

1−γ

0,+

)−1
has symbol s1−γ

s1−γ +λ
, according to the remark

of appendix A. The symbol is the Laplace transform of function Hλ,γ defined below, using
the Mittag–Leffler type function Eα(z) = 
n�0

zn

�(1+nα)
described in [28].

Notation: For positive valued t and λ and with γ between 0 and 1, let us set Hλ,γ (t) =
d
dt

E1−γ (−λt1−γ ).

The mapping
(
Id + λI

1−γ

0,+

)−1
is equal to the convolution of kernel Hλ,γ , which satisfies

Hλ,γ (t) = 
∞
n=0

−λt1−γ

�(1+n(1−γ ))
for t > 0, and belongs to Lp′

(R+) for p′ > 1. From this, we will

deduce that
(
Id +λI

1−γ

0,+

)−1
f (t) and the Riemann–Liouville derivative D

1−γ

0,+ f (t) of f become
very similar when t tends to infinity, according to the following proposition.

Proposition 2. For any function f belonging to Lp(R+), provided the Riemann–Liouville
derivative D

1−γ

0,+ f = ϕ exists in Lp(R+), expression
[(

Id + λI
1−γ

0,+

)−1 − λ−1D
1−γ

0,+

]
f (t) tends

to zero when t tends to infinity.

Proof. We have f = I
1−γ

0,+ ϕ, with ϕ in Lp(R+) ([30, 31]), and

[(
Id + λI

1−γ

0,+

)−1 − λ−1D
1−γ

0,+

]
f (t) = −λ−1(Id + λI

1−γ

0,+

)−1
ϕ(t).

To see that the latter expression, proportional to Hλ,γ ∗ ϕ(t), tends to zero when t tends to
infinity, let us take p′ such that 1/p′ + 1/p = 1. We have

|ϕ ∗ H(t)| �
∣∣∣∣
∫ t−A

0
ϕ(t − x)H(x) dx

∣∣∣∣ +

∣∣∣∣
∫ ∞

t−A

ϕ(t − x)H(x) dx

∣∣∣∣
� ‖H‖Lp′

(∫ t−A

A

|ϕ(y)|p dy

)1/p

+ ‖ϕ‖Lp

(∫ ∞

A

|H(y)|p′
dy

)1/p′

for A < t . For any given ε > 0, the latter integrals will be less than ε/2 if we take A large
enough to ensure

∫ ∞
A

|ϕ(y)|p dy‖H‖p

Lp′ < (ε/2)p and
∫ ∞
A

|H(y)|p′
dy‖ϕ‖p′

Lp < (ε/2)p
′
. Such

a A exists, because H and ϕ belong to Lp(R+). �

Appendix D. Two implicit schemes for (1) and (4)

For space derivatives ∂2
x2C(i�x, n�t) and ∂xC(iδx, n�t) in (1) or (4), not surprisingly we

take second-order schemes �x−2
[
C

(n)
i+1 − 2C

(n)
i + C

(n)
i−1

]
and (2�x)−1

[
C

(n)
i+1 − C

(n)
i−1

]
.

A simple trapezoidal integration rule yields 
n
j=0wjC

n−j

i (method 1) for I
1−γ

0,+ C(i�x,

n�t) in (4), and results in the implicit scheme

C
(n+1)
i − b

(n)
0

[
K�t

�x2

(
C

(n+1)
i+1 − 2C

(n+1)
i + C

(n+1)
i−1

) − v�t

2�x

(
C

(n+1)
i+1 − C

(n+1)
i−1

)]

= C
(n)
i + 
n+1

j=1

[
b

(n)
j

K�t

�x2

(
C

n+1−j

(i+1) − 2C
(n+1−j)

i + C
(n+1−j)

i−1

) − v�t

2�x

(
C

(n+1−j)

i+1 − C
(n+1)
i−1

)]

in the interior of the domain. The b
(n)
i are easily computed at each time step according to

subsection 4.1.
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We compared against the scheme obtained from (1) by discretizing the Caputo derivative
(method 2). Using for ∂

γ
t C(i�x, n�t) algorithm 1 of [40] yields(

1 +
λ�t1−γ

�(2 − γ )

)
C

(n+1)
i − K�t

�x2

(
C

(n+1)
i+1 − 2C

(n+1)
i + C

(n+1)
i−1

)
+

v�t

2�x

(
C

(n+1)
i+1 − C

(n+1)
i−1

)

= − λ�t1−γ

�(2 − γ )

n+1

j=1aj,n

(
C

(n+1−j)

i − C
(0)
i

)
+

λ�t1−γ

�(2 − γ )
C

(0)
i

where aj,n satisfy a0,n = 1, aj,n = (n + 1)1−γ − 2n1−γ + (n − 1)1−γ for 0 < j < n and
an,n = (1 − γ )n1−γ − n1−γ + (n − 1)1−γ .

Both methods need solving systems of the form of MU(n+1) = M ′U(n), with M a
tridiagonal array, and U(n) = (

C
(n)
0 , . . . C

(n)
i , . . . , C(n)

imax

)†
.
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